THE UDDER OF THE COW

HOW IS IT INSIDE?

Front Quarters (40-45 %)

Suspensory Ligament
Lateral Ligament
Laminas of Lateral Ligament

Lobule with Alveoli

Rear Quarters (55-60 %)

Udder Suspensory Ligament
Lactiferous ducts
Gland Cistern
Teat Cistern
Teat end

TOP VIEW OF THE UDDER

It comprises four independent glands, with one teat and one exit duct each. Right and left halves are totally separated.

SIDE VIEW OF REAR QUARTERS

HOW IS MILK PRODUCED?

1. Blood stream delivers nutrients to alveolus epithelial cells

2. Using these nutrients, epithelial cells produce milk, which is then released inside the alveolus lumen.

3. During milking, oxytocin is released in the blood stream, and induces contraction of the muscular cells covering the alveolus.

4. This contraction on the alveolus, leads to milk ejection (milk let down), forcing the milk out to lactiferous ducts and the gland cistern.

Developed by Humberto Rivera, MS., supported by the program “A Mexican-U.S. Dairyland Partnership Between Queretaro and Wisconsin: Dairy Training Research, and Extension for Economic Development and Trade”.
MASTITIS

WHAT IS IT?
“Inflammation of the mammary gland”. It leads to high economic losses, and is characterized by:
- **High somatic cell count** (decreased milk quality)
- **Decreased milk production** (less amount)
- **Abnormal milk** to visual observation
- **General symptoms** (fever, depression, etc.).

![Image](image.png)

Moisture, Dirty pens, Manure, Inappropriate milking routine = Higher exposure to mastitis germs

WHAT CAUSES MASTITIS?
- Many germs live freely in the environment waiting for an opportunity to colonize the teat end and enter the udder, and establish disease.
- Other germs are highly contagious and live in the udder of sick cows. These are transmitted to healthy cows during milking due to erroneous milking procedures.
- The best defense is maximizing hygiene to avoid colonization of the teat end.

The teat canal is the main defensive barrier

The teat canal is 8-9 mm long, and has numerous folds to prevent germs from entering the udder.

Transversal section of the teat end at about 4 mm from its external orifice. Notice the tightness of the teat canal.

Transversal section at 8 mm from the skin. The canal begins to open to the teat cistern.

Opening of the teat cistern after the teat canal is indicated by the arrow.

Longitudinal section of the teat canal with open folds.

Developed by Humberto Rivera, MS., supported by the program “A Mexican-U.S. Dairyland Partnership Between Queretaro and Wisconsin: Dairy Training Research, and Extension for Economic Development and Trade”.

TYPES OF MASTITIS

By presentation

Clinical Mastitis
- Abnormal milk
- Signs of disease present

Subclinical Mastitis
- Normal milk
- No signs of disease present

Easy detection = Timely treatment
Cow is isolated to be treated. Contamination to other cows and bulk tank is prevented. Economic loss will be minimized after successful treatment.

Not detected = No treatment administered
Cow continue to spread the disease and to contaminate the bulk tank. Represents the greater economic loss. Bulk tank and high SCC cows need to be cultured.

By source of origin

Environmental Mastitis
- Home: the environment
- Exposure in the pens
- Transmitted from the environment to healthy Cows
- Cannot be eradicated

Contagious Mastitis
- Home: udder and teat skin of cows
- Spread during milking
- Transmitted from sick to healthy cows
- In most cases can be eradicated

Developed by Humberto Rivera, MS., supported by the program “A Mexican-U.S. Dairyland Partnership Between Queretaro and Wisconsin: Dairy Training Research, and Extension for Economic Development and Trade”.
WHAT ARE SOMATIC CELLS?

Somatic cells are blood cells sent to fight udder infection

1. Cows are exposed to mastitis causing bacteria in pens or in the milking parlor.

2. These germs make it to colonize the teat end and enter the udder.

3. Germs ascend to the healthy alveolus of the gland to establish infection.

4. White Blood Cells (somatic cells) are sent to the infected tissue to fight the germs, thereby, they become a component in the milk of mastitis cows.
WHY MILKING PROCEDURES?

Forestripping

Stimulates oxytocin release in the brain, which in turn induces milk let down. Only practical tool to identify clinical mastitis during milking.

Pre-dipping

Pre milking disinfection reduces:
- Amount of bacteria on the teat skin
- Chance of germs from entering the udder
- Bacterial presence in the bulk tank

Key points during application:
- Allow 20 to 30 sec of action
- Min. coverage: 75% of the teat

Wiping

- Wipes off pre-dip removing dirtiness and germs
- Dries and cleans the teat prior to unit attachment

Key point during application:
- One individual clean and dry towel per cow
- Teat totally clean, especially teat end

Unit attachment

Clean, dry and milk-balloonated teats (appropriate stimulation time: 60-90 sec)

There should be immediate milk flow

Milking unit should be straight and balanced during unit attachment and during milking, air entrance should be prevented.

Incorrect

Correct

Post-dipping

Normally after milking, teat end will be relaxed for the next 20 minutes. During this period, post-dipping will be the only defense of the udder against mastitis causing germs.

Offering fresh feed after milking prevents cows from laying down, and allows the product to reach its protective action before cows are exposed to sources of contamination in the pen.

Developed by Humberto Rivera, MS., supported by the program “A Mexican-U.S. Dairyland Partnership Between Queretaro and Wisconsin: Dairy Training Research, and Extension for Economic Development and Trade”.
DESINFECTANTS AND ANTIBIOTICS

DESINFECTANTS

Disinfectants need time to kill bacteria, although they do not completely eliminate them. These products may be applied externally on the animal body (antiseptics), or on milking equipment (disinfectants).

ANTIBIOTICS

Medications administered to the cow to kill disease causing bacteria.

They do not kill either virus or fungi, and need several days of action to achieve good results.

Antibiotics do not differentiate among “good” and “bad” bacteria, thus, they also kill benign bacteria. In such a case, the body of the cow may not be strong enough to fight new infections.

DANGER: ANTIBIOTICS

• Extended use, or poor antibiotic selection lead to development of antibiotic resistance. Poor selection also favor the development of bacteria resistant to antibiotic.
• Antibiotics can destroy benign digestive flora. These good bacteria are important for digestion processes.
• In mild cases, the cow can fight the infection on her own without antibiotics.
• Antibiotics contaminate milk, and that is hazardous to consumers.
• Extra-label use of antibiotics is restricted to veterinarians to determine what, how, when and the appropriated dosage of antibiotic to be used.

Developed by Humberto Rivera, MS., supported by the program “A Mexican-U.S. Dairyland Partnership Between Queretaro and Wisconsin: Dairy Training Research, and Extension for Economic Development and Trade”.
FACILITIES HYGIENE

MILK HYGIENE BEGINS WITH FACILITIES HYGIENE

Unsanitary, dirty pens represent high number of bacteria and high risk of mastitis because:
- Cows lie down on dirty beds, and udder become contaminated
- Manure is scattered on cows’ udders when they are forced to run or walk fast

Scrape pens every time cows are milked (2 or 3 times per day)

Provide clean bedding 1 or 2 times per week. Remember: The bed is in direct contact with the udder.

POOR HYGIENE AND STRESS: FATAL COMBINATION

How clean or dirty the cows are when entering the parlor reflects not only on facilities hygiene, but also how the cows are handled in the pens by the farm personnel. Under stress, cow body defenses are suppressed making her more vulnerable to disease.

Developed by Humberto Rivera, MS., supported by the program “A Mexican-U.S. Dairyland Partnership Between Queretaro and Wisconsin: Dairy Training Research, and Extension for Economic Development and Trade”.